解决问题的策略(1)一一列举
教学目标:
1.经历用列举法解决简单实际问题的过程,并做到不重不漏,找出所有符合要求的答案。
2.通过列举法解决问题的学习、交流、反思,体会有序思考在日常生活中的应用及其价值,进一步发展学生思维的条理性、严密性。
3.进一步积累解决问题的经验,增强解决问题的策略意识,提高解决问题的能力。
教学重点:培养学生思考数学问题的条理性、有序性,体会解决问题的方法的多样性、灵活性。
教学难点:能运用列举得策略找到符合要求的所有答案。
教学准备:课件
教学构想:
解决问题策略教学的重点是认识、掌握策略。解决问题策略的习得,是以解决问题为载体,让学生主动经历过程、获得过程、方法的体验,继而以解决问题的方法为支撑,感悟并认识策略。
问题的特殊性,决定了解题方法的独特性。在例1的教学中,解决“怎样围面积最大”,对学生而言是具有挑战性的。通过这一问题,让学生从这一问题中感受到一定有不同围法,不同围法能围出大小不同的长方形,因此要解决这样的问题,就有必要找出有哪些不同围法,从而引导学生进入思维轨道,激发思维状态。
在问题解决后,及时引导学生回顾反思,通过交流,清晰解题方法的特点,感悟其中的策略,从而提炼、认识策略,初步掌握策略。
教学过程:
一、谈话导入
学生自主认定学习内容
今天我们一起来学习“解决问题的策略”
二、自学例1
1.明确例1中的数学信息及所需要解决的问题。
出示:教材例1情境图。
导入:图中有哪些数学信息?围绕导学单进行自主学习。
2.自学。
导学单
1.根据题中的条件和问题,你能想到什么?
2.你打算怎样解决这个问题?
3.你能列举出长方形的长和宽,再找出面积最大的长方形吗
4.回顾解决问题的过程,你有什么体会?
学生自学时,教师巡视,收集多种方法,准备实物投影。
3.小组交流。
交流内容
(1)你是怎样解决这个问题的?
(2)在解决问题的过程中有什么体会?
导学要点:
从宽是1米开始考虑,按这样的顺序既不会多也不会漏。
(有序思考,不遗漏、不重复)
在周长相同的情况下,长方形的长、宽差距越大,面积越小;长、宽差距越小面积越大!
4.全班交流
分析学生在自学中出现的各种情况,给予适当点评。
预设:
(1)写数的分成
(2)有序写出用3个数字组成的所有三位数。
(3)用12个边长1厘米的正方形,拼成不同的长方形。
……
让学生比较有序和无序的两种结果,思考:同样都给出了四种围法,你更喜欢哪个?为什么?
这就是今天我们要研究的解决问题的一个重要策略——列举。
在以前的学习中,我们曾用列举的策略解决过哪些问题?
三、练习。
【基本练习】
1.第95页练一练
(1)还有哪些时刻会发出铃声?
(2)除了用列举的方法还可以怎么解答?
2.练习十七第1题
【综合练习】
练习十七第2、3两题。
四、全课总结。

用户登录